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INTROII1JCTION

l~or many decades, plate waves have been the subject of NDE research and application. Reccntl  y,
the accumulated knowledge has been technology transferred to actuation mechanisms. ‘] ’hese waves, also
known as guided waves or lamb waves, can be formed in two distinct modes: symmetric and
antisymmctric, with a fundamental as well as high order harmonic modes. ‘1’hc specific modes are
defined by their vibration characteristics in relation to the plate geometry, e.g., the symmetric mode is
associated with a symmetric motion over the plate center plane. initially, these waves were applied for
ND}; of metallic structures [1]. After leaky Lamb waves were first observed in composite materials [2],
the spot light  of the plate waves research activity was turned toward materials with orientation
dependent properties . Many researchers have investigated solutions to the wave equations for
propagation in anisotropic materials and as a result efficient approximation techniques and numerical
solutions were developed. lJsing experimental methods, such as the leaky 1.amb wave, pulsed pitch-
catch and contact coupling, measurements accurately corroborated the theoretical predictions for the
various plate wave modes [3]. ‘1’hcsc results led to the ability to determine the elastic properties of
composite materials as well as adhesive bonded joints.

Generally, as can be seen from IJigure 1, the surface particles motion in a traveling flexural  plate
wave mode (i .c., anti symmetric mode) arc moving in an cllipt ical motion around their original location.
When the particles move upward they also move backward in reference to the propagating wave (the
wave moves right while the upward-rotating particle moves left). This backward movement can be
harnessed to propel  parts that are in an intimate contact with the vibrating plate.  ‘1’his effect has formed
the basis for a new actuation mechanism also known as ultrasonic, solid state or piczoelectric motors [4].
‘1’hc rotated object is called the rotor and the drive vibrating plate is called the stator.

U1 .rJ’RASONIC MO’1’ORS

‘l-he development of ultrasonic motors came at a time when there is an increasing demand for
miniaturized mechanisms and they are offering a new form of actuation with potential capabilities that
cannot be obtained with conventional actuators. NASA, in its efforts to reduce the size and mass of
future  spacecraft, is strongly interested in miniature actuators. The miniaturization of conventional
electromagnetic motors is limited by manufacturing constraints and loss of efficiency. Generally,
electromagnetic motors compromise speed for torque using speed reducing gears. “1’he use of gears adds
mass, volume and complexity as well as reduces the system reliability due to the increase in number of
the system components. Ultrasonic motors are offering an effective alternative drive mechanism for
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miniat  urc instruments, provide high torque density at low spccci, high holding torque, simple
construction, quiet operation and quick response, These motors already emerged in commercial
products, such as cameras, compact paper handling dcviccs  and watches. lJndcr the Mars Lander
Robotic Program, .lP]. is currcntl y considering the usc of these motors for the actuation of a robotic arm
that will perform sample collection tasks on the surface of Mars. A study is current] y underway to
develop such motors for operation in space environment, i.e., operate effective] y and reliably in vacuum
and low tcmpcraturcs down {o cryogenic levels. The theoretical modeling and prototype dcvclopmcnt
arc conducted with Ml ‘1’. l~urther,  a technology transfer is being explorc(i  with a local smal 1 company
(QMI, Costa Mesa, CA) under a ‘1’cchno]ogy Cooperative Agrccmcnt.

I) RINCIPAI.  OF 01)13RA”1’ION

lJltrasonic motors produce a gross mechanical motion by amplifying repeated micro-deformations
that arc induced by an active material (usually a piezoclectric  wafer). As shown in }~igure 1, the induced
micro orbital-motion in the stator (at the point of contact with the rotor) is rccti fied by the frictional
intcrfacc  (rotor/stator) to produce macro-motion of the rotor. Teeth, arranged as a ring on the stator,  arc
used to enhance the speed of the particles propcllirg  effect. ‘1 ‘he rectification of the micro-motion at the
intcrfacc is provided by pressing the rotor on top of the stator and the fricti ona] force bctwccn the two
causes the rotor to spin. ‘1’his motion transfer operates as a gear and it leads to a rotation speed (up to
about 500 rpm) that is much lower than the wave frequency (1 0-80 KIIx).

‘1’o g,cncratc traveling waves, a piczoceramic  wafer poleti internally is a structure that consists of
quarter wavelength out-of-phase zones. ‘l’his poling pattern is also intendeci  to eliminate extension in the
stator and maximize bending. ‘1’wo poled groups are formed on the wafer and arc driven at 90° out-of-
phase to produce two orthogonal (iisk modes. Using  sinusoidal and cosinusoidal  electric drive signals,
these orthogona modes arc controlled to generate either forward or backward rotation.

‘applied

‘appl(td
L>

l;igurc  1: l’rinciple  of operation of a rotary traveling
wave motor.

surface (not to scale)
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‘1’hc evolution of plate waves from NDE to actuation technology has offered a dual-use of the plate
wave theoretical modeling base, which was initially (icvelopcd  for ND1 L Specific concern in modeling
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ultmsonicnmtors  isthcmcchanical  interaction at the statm-rotor  interfaccand  as this issue is better
handled the design of optimized motors is becoming increasing feasible.

Currently, these motors arc commercially available from Japanese manufacturers and in an
cxpcrimcntal  form from I]uropcan  manufacturers. Al I new Cannon cameras arc now equipped with this
motor type as the drive of the zoom lens. New applications a] e increasingly being reported, including
CD-ROM disk drives, as WCII as other hardware that support the computer tcchno]ogy.  lJnfortunatcly,
there is still no American manufacturer of ultrasonic rotary motors and the J]’]. effort is hoped to form
such a manufacturing capability.

“1’hc stall torque (measure of the motor capability), that can bc produced by commercial motors, is
in the range of 0.1 to 10 in-lb. Efforts are exerted to expand this range at both ends, namely to increase
tbc torque capability to higher levels as well as to produce actuators for micro-electromechanical
systems (M I\M S) [5]. Ml iMS is the fasted growing segment of the actuation technology and, in the
coming years, it is anticipated to hccomc  a multi-billion dollar industry. “13ug’’-like devices are being
developed for a wide spectrum of applications that used to be considered as science-fiction. Such
applications inc]udc medical micro-operation of internal organs, support search and rescue missions in
earthquake and other disasters, smart structures, activation of aerospace and automotive devices and
micromachining  tools.

ACKNOWI,l;DGMI;N’1”

‘1’hc rescarcb dcscribcd in this publication, that was carried out by the let Propulsion I,aboratory,
California ]nstitutc of ‘1’echno]ogy, was performed under a Contract with the National Aeronautics and
Space Administration and it is part of a larger task on Mars Lander Robotics (P.]., Dr. Paul Schenker,
JP1 ,). The goal of this task is to advance mechanisms, controls and machine intelligence for next
generation p]anctary  in-situ scicncc  exploration.

1.
2.

5. .

J. and 11. Krautkramcr, “lJltrasonic Testing of Materials”, Springer-Vcrlag,  Ncw York (1 969).
Y. Bar-Cohen and D. l;. Chimcnti,  “Leaky l..amb Waves in Fiber-Rcinfhrced  Composite Plates,”
Review of l’rogrcss  in Quantitative NDI;, Vol. 3B, D. O. ‘J’hompson  and 1 ). 11. Chimcnti  (I;ds.),
P]cnum Press, Ncw York (1 984), pp. 1043-1049.
13ar-Cohen, A. K. Mal and S. -S. ].ih, “NDE of Composite Materials Using Ultrasonic Oblique
lnsonification,” Materials }Ivaluation,  Vol. 51, No. 11, (Nov., 1993) 1285-1296.
W. 1 lagood and A, Mcl;arland,  “Modeling of a Piczoelectric  Rotary lJltrasonic Motor,” IIjlilj
‘1’ransactions  on Ultrasonics, l;crroclcctrics  and Frequency Control, Vol. 42, No. 2, 1995 pp. 210-
224.
};l ynn, ct al, “1’iczoclectric  Micromotors for Microrobotics” , J. of Microclectromechanical  Systems,
vol. I, No. 1,(1992)  pp. 44-51.



LOW IR13QUI”1NCY  GUIDED

REINFORCED COMPOSITES

Shyh-Shiuh  Lih
Jet Propulsion L

PLATE WAVE PROPAGATION IN FID13R

and Yoseph Bar-Cohen
aboratory

California Institute of Technology, Pasadena, CA

Ajit K. Mal
Department of Mechanical Aerospace and Nuclear Engincerin.q
U&ersity  of California Los Ang&s, CA

INTRODIJCTION

The use of composite materials has incremxi  steadily during the past two decades,
particularly for aerospace, underwater and automotive structures. l’his k largely because
many composite materials exhibit high strength-to-weight and stiffness-to-weight ratios, which
make them ideally suited for use in weight-serv+itive  structures. The elastic properties of
composite materials may be significantly different in specimens manufactured under the same
general specifications and the bulk material properties may be different from those of the
lamim.  The elastic properties degrade as a result of aging, environmental and other effects
(e.g., matrix cracking) resulting in overstress  and eventual failure of the material. The elastic
properties determine the performance of the material and it is necessary to assure the
conformance of these properties with design requirements. Convent ioml destruct ive
techniques for determining the elastic stiffness constants can be costly and often inaccurate.
This is particularly true for the t.hrough-the-tlickness  properties. Nondestructive
detemlination  of these properties offers a better alternative for material characterization and
for assuring structural performance.

A systematic analytical method proposed by Mal,  Lih and Bar-Cohen [1], employing
the leaky Lamb wave (LLW) phenomenon, has been found to be an effective method for the
characterizit  ion of the elastic constants. The model assumes that the composite material
consists of transversely isotropic layers and the transmissiori of the ultrasonic signals requires
the use of water immersion or water injection through squirters. Dispersion curves (phase
velocity vs. thickness times frequency) are measured and are used to determine the elastic
constants using an inversion algorithm. The water couplinp,  requirement restricts the field
applieabilit  y of the method and limits the number of constants that can be measured.
Particularly, the constant c,, is difficult to determine due to practical difficulties that are
associated with setting up experiments with small incidence angles. The application of a
contact-coupled guided-wave method offers the potential for a practical nondesttuct  ive
characterization method.
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(b) Antisyrnmetric Mocle

Figure 1. Definition of the geometrical variables of the symmetric and antisymrnelric  guided
wave modcx.

The theoretical and experimental studies of guided wave propagation in compositwi
have grown considerably in recent years [2, 3]. A homogenmus  composite laminate with the
axis of symmetry parallel to the surfaces (Figure 1), supports the formation of two modes of
propagation: symmetric and antisymmetric. The lowest symmetric (extensional) and
antisymmetric”  (flexural)  mock are the easiest to measure in an ultrasonic experiment and their
velocity value can be used to determine certain material constants. German [4] has developti
an ultrasonic technique which is based on a contact type transducer-pair arrangement that can
be used to measure the dispersion curves of the low frequency flexural  mode, and to
de$ermine  the elastic propeflies. Unfortunately, the flexural wave signals are usually mixed
with reflected signals from the boundary if the lateral dimemions  of the specimen are small in
relation to the wavelength or if the geomemy is complex. In this case, only the extensional
mode can be identified clearly.

A systematic parameter study was conducted [1] and is showing that the stiffness
constants  Cll, cm, cm, and C55 have a strong influence on the dispersion curves for the lowest
symmetric extensional mode in the low frequency range. In Figure 2, the dispersion curve
for the symme~ic  mode for wave propagation along the fibers is plotted. In this figure, the
strong effect of C,l can be easily observed. In this study, a detailed analysis of the low
frequency symmernc guided waves was conducted and the results corroborated
experimentally.

12.0

I

Figure 2. The influence of the elastic constant q, on the dispersion curve of the symmetric
mode.



FORMUI.ATION OF SYMME’I’RIC MODE DISPERSION EQUATION

F~xact  I.inear I Hast ic Solut~)

Generally, the dispersion equations for guided wave propagation in composite
materials are very complicated and need to be solved numerically. The exact equations for
the dispersion curves for l~nb wave propagation in multilayered composite laminates has
been derived by many authors (e.g., Mal [5]). However the derived equa(iom  are highly
nonlinear and the numerical solution is computationally  intensive. In the low frequency range,
approximations can be made to simplify the solution for tk lowest extensional mode. A
unidirectional composite laminate is assumed transversely isotropic with symmetric axis along
the fiber direction, The symmetry axis is defined as the T-axis of the coordinate system and
the stress-displacement relations are given explicitly in[5], where c1,, Clz, CZ2,  c21,  c~~ are the
five independent real stiffness constants of the material. Wc also introduce five constants q,
~, as, ad and tq related to Cij and the density of the material, p through

al
=  c2~/p3 ~ = cll/p) ‘ 3  = (c12  + c55)/p

(1).,
f14 =  (C22 - c23)/2p, as  = QP .

The dispersion equation for the symmetric mode can be expressed x [5]

A ~cot(~l@  + Azcot(@oh)+  @t((@) = O (2)

where h =H/2 and 24 is the plate thickness. In the limit, where frecluency approaches zero, i .e
uh + 0, the dispersion equation becomes

‘Al A A
—. +.2+ J=() (3)
c, c, c~

which can be expanded as

(pv2-c55?r~ (pvz -  c,,n~ fl(co> n,, n2) =  o

2
~(Cv ?tI, ~) = (-C:2C55 +  c11c#55)n;  + 

(-%2C22
(4)

+C1 ,C;2 + 2C;2C23 - c1 ~c:3 -2C12CZC55 +  2c1#z3c$S)n~~2  +  (c~css  -  
c-f3c55)~j

+ [(C;2 ‘cl lc22 “22c55)n; + (-C;2 + c;3-cnc55)n.jfpv2 + c22p V4 .

Here the equation fl(cti, n,, n~ =0 represents the dispersion equation of the limit of the
lowest symmetric mode and n,= cos~, nz=sin  ~, and @ is the angle of propagation with the
fibers . This equation can be simplified in special propagation directions as follows:

a. For propagation along the symmetric axis (O’), the dispersion cquatiotl  becomes

(PV2  -  c55)(c22p~  +  c~2 -  C~tCJ = O

so that

v1,2=1
C55

‘r

c11 - c;~cz
—.

P’ P

(5)

(6)



b. For propagation perpendicular to the symmetric axis (90]), the equation can be simplific(i  to

(7)(p  V2 - c55)(c22p  V2 - C;2 + C;3)  = o

so that
-—

v
{-” J

C55 :??- .:-:&!!_?—.. .
1,2=

P ’ P “

(8)

For an isotropic material, the solutions (6) and (8) can be reduced to the well know expression

(9)

Approximate Plate Theories

For low frequency guided wave propagation in composite laminates, various
approximate models have been proposed [8]. h is well known that classical plate theories
underestimate the deflections as well as the stresses and overestimate the phase velocity of the
propagating waves. The error associated with the calculation grows significantly with the
increase in plate thickness or frequency; hence, for dynamic analysis of high values of
thickness-times-frequency, the clasical plate theories are inadequate. Mindlin  and others [7]
proposed an improved approximation using the first order shear deformation theory and
retaining the transverse shear and rotary inertia of the plate elements. Based on this
theoretical approach the dispersion curves of the first antisyrnmefric  mock can be
approximated very closely to the exact solutions [8]. According to this theory, the
displacement components are assumed to be of the form

U1 = Z&l, X2! o +  
x3iJl(xlj X2* o

(lo)
U2

= Uj(x], X2, r) + X3V2(X1, ‘2Y ~)

U3 = U:(xl,  X2, t)

where Uol,  Uoz and Uol are the displacement components of a point in the mid-plane, and ~1
and 42 are the rotations of a line element, originally perpendicular to the longitudinal plane
about the Xz and xl axes, respectively. However, based on this assumption, the lowest
symmetric modes are nondispersive as in the classical plate theory. This is the result of
ignoring the fact that u, and zq are even functions of X3, and U3 is an odd function of XJ for the
symmetric mode (Figure 1a). In order to obtain a high order approximate symmetric mode
dispersion curve, a term X3 ~j is included in the out-of-plane displacement 243.

U1 = 24:(X1,  X2, t)

U2 = U:(xl, X2, t)

U3 = X3*3(X1,  X2> o

(11)
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Hence, the governing equation for the symmetric mocle caTl be written  as

Iliil

12U2

1

(12)

731J3

The dispersion equation can be derived from the following eigenvalue  equation:

-(A11k:+A55~2) +Z102 ‘(A~*+A55)k~& iA12k1

-(Alz +A55)k1kz (13)-(A55k;+Azz~2) +Z102 iAzJ~ =0

iA12k1 iA23~ D55k; +D44~2  +A22 +Q.J2

where k, = JV n,, kz = u N nz and V is the phase velocity. Aj BY and Dv are the
commonly used generalized elastic parameters for composite laminates.

All = C1lH,  A12 = C12H, A2Z = C22H,  A5 5  =  C55H,  A2~ = cz~H

D55 = C551~p, Du = c~z~p, CM = (c22-c23)/2 (14)

11 = @f, Is = pH3/12

If the laminate is a transversely isotropic material, then the approximate dispersion equation
can be expressed as

(  ‘Cf2C55  + cllc22c55)nf + (-2C2 c 2 2 2
12 2 2  +  cIIc22  + 2C12C23  - C11C23

- 2C12C22C55 2 2
+ 2C12C23C55)%  %

2
+  (C22C55 – &c55)n:

(15)

7 2 + C22PV4+ [(c~z ‘cllczz ‘c22c55)n~ ‘(–c~2  + c~3 ‘c22c55)~12  P ~ + o((dl)2)  = o

In the limit wIZ -+ O this equation is the same as equations (4). Note that high order
approximations such as

u!
=  U:(xl, X2, t) +  x;Tl I(xp X2, 0,

(16)

U2
= U;(xl> X2, q + x 5 12 ( x1 , X2, 0, U3 = X3$3(X1> X2, O

can lead to more accurate results but they will increase the complexity of the dispersion
equation.

Furthermore, depending on the experimental setup, the measured wave velocity can be
either the phase or the group velocity. The group velocity ~ can be calculated from the
characteristic equation of the phase velocity by

~ .  - -M1/&l (17)
e

afi/av
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EXPERJMJ;NTA1, APPROACII

An experimental setup was designed to determine low frequency lneasurenvmts of the
dispersion curves. The setup consisted of a contact pitch-catch arrangenmlt,  where the pulse
source was induced by breaking a pencil lead on the surface of the test sample. Three
identical receiving transducers were placed in contact with the composite laminate along one
line that defined the angle of propagation and they were spaced at a distance of 25 mm apart.
The transducers were a broadband type with 5 MHz center frequency (Digital Waves, Model
1]1000). For data acquisition a Fracture Wave Detector (I)igital Waves, 1~4000) with four
signal conditioning modules was used. Each of the transducers was connected to a wideband
preamplifier through a signal conditioning module  and the signals were digitized and recorded
at a rate of 3.125 MHz to 25 MHz. A schematic view of the experimental setup is shown in
Figure 3. A [O]lc,  12 x 12 cm2 unidirectional AS4/3502  (1 lercules)  graphite/epoxy laminate
was used as the test sample. The laminate was ploduced using a standard hot-press curing
technique, which led to a laminate thickness of 3.175 mm. The emphasis of the current study
was on the inversion of fiber dominated properties c,, and C,z. For this purpose material
density of p = 1.56 g/cn13  was used and the matrix dominated material constants, qt, CZJ,  and
CJJ, were predetermined using leaky Lamb waves and the ilwersion technique described in [1]
w follows: qz =15.6, ~~ =7.89, c~~ =5.00 (GPa).

lhe use of the pencil-lead breaking method as the source of signals was chosen since
the signals that are produced have a low frequency broadband spectra in the range of 50 to
100 KHz. The data for each received signal was transferred to a personal computer and
processed to determine the wave velocity for the analysis of the dispersion curve.
Measurements were made along different directions with the fibers at 1 Y intervals from 0’ to
90° and the three receivers were placed at a distance 25 mm, 50 mm and 75 mm from the
source. For various directions of the transducers placement, the group velocity was
determined from the time-of-flight measurements using the arrival of the first received signal.

RESULTS AND CONCLUDING REMARKS

Dispersion curves for the exact and approximate solution of the symmetric mode are
plotted in Figure 4. This figure shows the phase velocity of a unidirectional graphite/epoxy at
45° to the fibers. It can be seen that the approximate solution agrees with the exact solutions
for the frequency times thickness values lower than 0,7 MI ]z-mm. Further, this
approximation allows the calculation of modes that can not be obtained using the classical
plate theory.

The measured and calculated group velocity for wave propagation at the 0’ to 90’ with
the fibers are presented in Figure 5. The elastic constants q], Clz were determined by
inversion of the measured group velocity and they are: q, = 155.01, C12 == 6,44 (GPa). It can
be seen that the calculated curves fit the experimental data quite WCII. }Iowever, it is known
that the group velocity of the extensional mode in this frequency range may not be sensitive to
some of the elastic constants. In order to characterize the material constants from the
measured group velocity, a parametric study was carried out and is presented in Figure 6. In
the figure the group velocity curve is plotted for the lowest symmetry mode. From this
figure, one can easily see that c1, has the strongest influence on the group velocity curve near
0° and decreases toward zero at about 45°.
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Figure 3. A schematic description of tbe experimental setup.

Figure 4. Comparison of dispersion curves for a 1 mm thick graphite/epoxy plate between
exact theory and shear deformation theory for wave propagation at 45” to fibers.
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Figure 5, Measured and calculated group velocities for the extensional wave mode ~
propagating at 0“ to 90’ with the fibers in a unidirectional graphite/epoxy plate of 3.175 mm
thickness.
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